# INSTRUCTION MANUAL MODEL 441A FREQUENCY-TO-VOLTAGE CONVERTER 

The information contained in this manual is proprietary. Permission to reproduce all or part must first be obtained in writing from this company.

Ectron Corporation reserves the right to make specification changes at any time.
LIFE-SUPPORT POLICY: Ectron products are not authorized for use in life-support devices or systems without the express, written approval of the President of Ectron Corporation.

Copyright 1996
Ectron Corporation
All rights reserved

Revised September, 2015
For units with serial numbers
62230 and above.

Ectron Corporation
8159 Engineer Road
San Diego, CA 92111-1907
U.S.A.

858-278-0600
800-732-8159

Fax: 858-278-0372
www.ectron.com
sales@ectron.com

## Table of Contents

PAGEInside Front Cover
Warranty
Section I, Description
General ..... 1-1
Features ..... 1-1
About this Manual ..... 1-3
Abbreviations ..... 1-4
Section II, Specifications
General ..... 2-1
Input ..... 2-1
Output ..... 2-2
Frequency-to-voltage Conversion ..... 2-3
Calibration ..... 2-4
Alignment ..... 2-4
Front Panel ..... 2-4
Retention of Settings ..... 2-4
Input Power ..... 2-4
Environment ..... 2-5
Dimensions ..... 2-5
Compatibility ..... 2-5
Section III, Operation
General ..... 3-1
Connections ..... 3-1
Operational-state Diagram ..... 3-1
Limits vs Settings ..... 3-4
View Angle ..... 3-4
Controlling the Model 441A ..... 3-4
Operate Screen ..... 3-6
Frequency-set Screen ..... 3-6
Voltage-set Screen ..... 3-7
Input-signal Screens ..... 3-7
Pulses/Revolution Screen ..... 3-7
Input-sensitivity Screen ..... 3-8
Input-B/W (Filter) Screen ..... 3-9
Output-filter Screen ..... 3-9
Table of ContentsCal Screen3-10
Secondary Screens ..... 3-10
Ten-volt Alignment ..... 3-11
Reset ..... 3-12
Enclosures ..... 3-13
Model E408-1 ..... 3-13
Model E408-6 ..... 3-13
Model R408-14 ..... 3-14
Section IV, Applications
General ..... 4-1
Input-signal Conditioner ..... 4-1
Input Signal, Grounding, and Shielding ..... 4-1
Emi Protection ..... 4-2
Frequency-to-analog Conversion ..... 4-2
Output Analog Filter and Output Stage ..... 4-2
Frequency and Voltage Set Points ..... 4-2
Noise ..... 4-3
Uncertainty and Resolution ..... 4-5
Filtering ..... 4-8
Input Bandwidth Filter ..... 4-8
Output Filter ..... 4-9
Digital Filter ..... 4-9
Selectable Input Sensitivity ..... 4-12
Response Time ..... 4-12
Update Rate ..... 4-12
Latency ..... 4-13
Front-panel Indication ..... 4-13
Calibration ..... 4-13
Vehicle Applications ..... 4-14
Section V, Theory of Operation
General ..... 5-1
Signal Conditioning (Hardware) ..... 5-2
Frequency Measurement (Firmware) ..... 5-2
Transfer Function (Firmware) ..... 5-2
Output Stages (Hardware) ..... 5-2
Power Supplies (Hardware) ..... 5-3

## Section VI, Calibration

Equipment Required 6-1
Pre-calibration 6-1
Alignment 6-4
Post-calibration 6-5
Optional Calibration Tests 6-5
Ectron Model 441A Calibration Test Report 6-7
Section VII, Parts Lists
Names of Manufacturers 7-1
Model E408-6 Enclosure 7-2
Model R408-14 Enclosure 7-3
Figures
Model 441A 1-1
Figure 3-1, Operational-state Diagram 3-2
Figure 3-2, View-angle Screens 3-4
Figure 3-3, Operate Screen 3-6
Figure 3-4, Frequency-set Screen 3-6
Figure 3-5, Voltage-set Screen 3-7
Figure 3-6, Pulses/Revolution Screen 3-8
Figure 3-7, Input-sensitivity Screen 3-8
Figure 3-8, Input-bandwidth Screen 3-9
Figure 3-9, Output-filter Screen 3-9
Figure 3-10, CAL Screen 3-10
Figure 3-11, Adjust 10 V Screen 3-11
Figure 3-12, Alignment-required Screen 3-11
Figure 3-13, Memory-error Screen 3-12
Figure 3-14, Reset Screen 3-12
Figure 4-1, Maximum Uncertainty for 4-4
Figure 4-2, Worst-case Resolution for
Various Frequencies 4-5
Figure 4-3, Maximum of Uncertainty and $\begin{gathered}\text { Resolution for Various Frequencies }\end{gathered}$
Figure 4-4, Maximum Output Noise with a 10 mV Sine-wave Input 4-7
Figure 4-5, Maximum Output Noise with a 1 V Sine-wave Input 4-8
Figure 4-6, Effects of the Digital (Periodic-error) Filter 4-10

## PAGE

Figure 4-7, Filtering Scheme for ABS Testing
Figure 4-8, Filter Circuit for ABS Testing
Figure 4-9, Strip-chart Recording of ABS Action
4-11

Figure 5-1, Model 441A Block Diagram
4-12

Figure 6-1, Frequency-range Setup -
5-1
Figure 6-2, Frequency-calibration Setup 6-3
Figure 6-3, Alignment 6-4
Figure 6-4, Optional Tests 6-5

## Tables

Table 1-1, Abbreviations in This Manual 1-4
Table 2-1, Input Bandwidth and
Sensitivity Settings 2-1
Table 2-2, Front-panel Screens 2-6
Table 3-1, Connector-pin Assignments 3-1
Table 3-2, Default Settings and Limits 3-3
Table 4-1, Input Frequency vs
Output Voltage (Example) 4-3
Table 4-2, Response Time Versus Output Filter Setting 4-9
Table 6-1, Input Sensitivity 6-6
Table 7-1, List of Manufacturers 7-1
Schematics and Drawings
Model E408-6Y (Internal 12 V dc Power Supply) 408-600
Model E408-6X (Internal 28 V dc Power Supply) 408-601
Model R408-14Y (Internal 12 V dc Power Supply 408-605
Model R408-14X (Internal 28 V dc Power Supply 408-606
Model 441A Outline Dimensions 441-901
Model E408-1 Outline Dimensions 408-900

## Section I <br> Description

## GENERAL

The Model 441A produces an analog voltage that precisely represents the frequency of an applied input signal. Adjustable "input frequency to output voltage" set points allow the user to quickly bracket the frequency of interest.
A unique crystal-controlled microcontroller design provides fast response, high conversion accuracy, and low output noise that is independent of frequency. In the operate mode, the front-panel display shows the input frequency with up to five-digit resolution. All operating parameters are set using the display and only one other frontpanel control. It's that easy. The input-signal conditioner automatically provides stable operation for a wide range of pulse-, square-, and sine-wave signals from under 10 mV to 100 V .

## FEATURES

Reliable "state of the art" design

## Simplicity



The Model 441A combines the same rugged construction used in the Ectron 400 Series product line for the last 30 years with the latest electronic and surface-mount technology to produce a true breakthrough in frequency-to-voltage conversion.

Designed in are rapid response to any change in frequency, low output noise that is independent of input frequency, and input-signal conditioning that automatically provides correct operation for a great variety of input signals, both in wave shape and amplitude.

Gone is the clutter of switches, knobs, pots, etc. associated with other frequency-to-voltage converters. All

Display

Encoder
has been replaced with two easy-to-use controls that allow complete control: the display and the encoder.

The backlit digital display has the dual function of display and screen selection. Nine easy-to-use setup screens, four less frequently used screens, as well as the operate screen are accessible to the user at the touch of the display.

With just this one additional control, the user can completely and easily configure the Model 441A to precisely what the situation requires. The encoder also has a dual purpose: character selection and change.
Wide range of applications With an input-frequency range of 1 Hz to 50 kHz and an output-voltage range of -10 V to +10 V , the user can employ the Model 441A to study a wide variety of frequency-producing equipment. This is in keeping with Ectron's intent to provide instruments with wide application for the serious user.

Power

Model 441AL versus Model 441A

The Model 441A operates from any dc power from 10.5 V to 32 V . This simplifies test-configuration setup for the user and may even reduce the cost if fewer power sources are required.

The Model 441AL incorporates a fixed-gain logic-level input detector instead of the input automatic gain control

## Enclosures

 (AGC) of the Model 441A. The Model 441AL is designed to operate with fixed-level input signals with relatively sharp rise and fall times. The input can be set to accommodate levels of 0 V to $5 \mathrm{~V}, 0 \mathrm{~V}$ to 25 V , and 0 V to 100 V .The fixed gain of the Model 441AL input stage reduces the delay in responding to an abruptly starting input signal unlike the AGC circuit, which has a hard time responding quickly to an input signal that starts suddenly. AGC timing is a compromise between fast response and noise immunity. As a result the AGC may not keep up with a rapidly rising input amplitude: the Model 441A may not respond to this signal for several hundred milliseconds. A similar situation exists for a rapidly falling input amplitude. These delays are reduced to one millisecond plus one period of the input signal in the Model 441AL since no AGC stage is present.

Because the Model 441A uses the same connector as all other 400 Series products, it can be used in all Ectron enclosures designed for this product line - even intermixed with Model 428 and 352 conditioner-amplifiers and Model 451 LVDT-signal conditioner. The Model 441A uses the same input and output pins as do these
other products, so the user who has existing hardware in place can remove an amplifier-conditioner and plug in the frequency-to-voltage converter and start using it immediately.

## ABOUT THIS MANUAL

The following sections are in this manual:

## Specifications

## Operation

## Applications

Calibration

Drawings

Warranty

This is a complete technical description of the Model 441A and the performance that is guaranteed. While the performance specifications are the best in fre-quency-to-voltage conversion, they are conservative. The user may find that a particular unit will perform well beyond specification.

Here the user will find complete instructions to use the Model 441A. Pictures of all the screens and an operational-state diagram enhance the discussion. Also discussed are the various enclosures available for the Model 441A and other 352 and 400 Series units.

Because the Model 441A is designed as a universal fre-quency-to-voltage converter, it would be impossible to address every possible use for this product. Rather, this section is written to help the user get the most from the data resulting from using the Model 441A. Concerns about cabling, shielding, common-mode voltage, etc. are addressed.

Because the Model 441A is an encapsulated unit, repair in the field is strongly discouraged. Therefore, a detailed circuit analysis is foregone in this manual. However, theory at the block-diagram level as well as a discussion of internal software is presented to further aid the user in operating the frequency-to-voltage converter for best performance.

Step-by-step instructions are given to test the Model 441A against its specifications. A brief overview of each test is given to give the technician further insight into each test performed.

Schematic diagrams of several enclosures are included to aid the user in instrumentation configuration.

The warranty for this product is on the inside of the front cover.

## ABBREVIATIONS

Table 1-1 lists the abbreviations used throughout the manual.
Table 1-1
Abbreviations in This Manual

| Symbol | Meaning | Typical use |
| :---: | :---: | :---: |
| ac | Alternating current | 120 V ac |
| A | Ampere | Power current $=150 \mathrm{~mA}$ |
| C | Centigrade | $50^{\circ} \mathrm{C}$ |
| dc | Direct current | 10.5 V dc to 32 V dc |
| - | Degree | $50^{\circ} \mathrm{C}$ |
| $\mathrm{f}_{\mathrm{co}}$ | Filter cutoff frequency | $\mathrm{f}_{\mathrm{co}}=100 \mathrm{~Hz}$ |
| fin | Input frequency | fin can be 1 Hz to 50 kHz |
| F | Farad | Input Impedance $=\ldots 300 \mathrm{pF} \ldots$ |
| fu | Upper-frequency set point | $\text { Volts-per-hertz resolution }=\frac{V_{U}-V_{L}}{f_{U}-f_{L}}$ |
| fL | Lower-frequency set point | See fu |
| g | Gravitational force, gram | $\begin{aligned} & \text { Shock resistance }=20 \mathrm{~g} \\ & \text { Weight }=270 \mathrm{~g} \end{aligned}$ |
| Hz | Hertz (cycles per second) | $\mathrm{f}_{\text {in }}$ can be 1 Hz to 50 kHz |
| k | Kilo ( $1 \times 10^{3}$ ) | Maximum frequency $=50 \mathrm{kHz}$ |
| M | Mega $\left(1 \times 10^{6}\right)$ | Noise-measurement bandwidth $=\ldots 1 \mathrm{MHz}$ |
| m | Milli $\left(1 \times 10^{-3}\right)$, meter | Width $=28.4 \mathrm{~mm}$ |
| $\Omega$ | Ohm | Output impedance $=1 \Omega \ldots$ |
| oz | Ounce | Weight $=9 \mathrm{oz}$, nominal |
| p | Peak, pico ( $1 \times 10^{-12}$ ) | Input sensitivity $\geq 10 \mathrm{mV} \mathrm{p}$ <br> Input Impedance = ... 300 pF... |
| p-p | Peak to peak | 20 V p-p output capability |
| s | Second | Update rate $=1 \mathrm{~ms} \ldots$ |
| V | Volt or voltage | 10 mV to 100 V input |
| Vu | Upper-voltage set point | See fu |
| $\mathrm{V}_{\mathrm{L}}$ | Lower-voltage set point | See fu |
| " | Inch | Length $=4^{\prime \prime}$ |

## Section II Specifications

## GENERAL

All specifications apply over the temperature range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ unless otherwise specified, and they are the maximum deviation allowed from ideal unless otherwise noted. Table 1-1 lists the various symbols and their respective meanings that are used throughout this manual.

## INPUT

## Configuration

Impedance
Frequency range
Sensitivity and bandwidth

Differential with a common-mode-voltage rating of up to 100 V dc or peak ac.
$200 \mathrm{k} \Omega$ in parallel with 300 pF nominal.
1 Hz to 50 kHz .
Three steps of input sensitivity and three steps of in-put-bandwidth control are provided to optimize input signal-to-noise ratio.

Table 2-1
Input Bandwidth and Sensitivity Settings

| Screen | MIN | MID | MAX |
| :---: | :---: | :---: | :---: |
| Input B/W | 10 Hz | 500 Hz | Wideband |
| Input Sensitivity | 200 mV peak | 25 mV peak | 10 mV peak |
| All settings are nominal. |  |  |  |

Periodic-error filtering

Square- and sine-wave amplitude range

Pulse amplitude range

Response to rapid change in amplitude

A periodic-error filter can be activated for input signals that are less than 1 kHz . By entering the pulses per revolution (cycle), the user can eliminate erroneous variations of periodicity. Two to 999 pulses can be accommodated.

10 mV to 100 V peak.

40 mV to 100 V peak ( $2.5 \%$ to $97.5 \%$ duty cycle, $5 \mu \mathrm{~s}$ minimum pulse width).

The Model 441A will recover and provide the proper output within $0.2 \mathrm{~s}+1 / f_{\text {in }}$ following a 10:1 change in amplitude of the input signal, where $f_{\text {in }}$ is the frequency of the input signal.

Uncertainty ( $V_{\text {UNC }}$ )

Uncertainty (Hz)

Scaling $\left(\frac{V}{H z}\right)$

Resolution (R)

The linear range of the analog output is from -10 V to +10 V with up to 10 mA current. The output limits are approximately $\pm 10.5 \mathrm{~V}$. Output voltage for a given frequency is determined by voltage and frequency set points using the following:
$V=\frac{V_{U}-V_{L}}{f_{U}-f_{L}} \times\left(f_{\text {in }}-f_{L}\right)+V_{L}$,
where $f_{i n}$ is the input frequency and $V_{U}$ and $V_{L}$ and $f_{U}$ and $f_{L}$ are the upper and lower voltage and frequency settings of the instrument, respectively.

For frequencies less than 1 kHz ,
$V_{U N C}=0.00122+\left[\frac{f_{\text {in }}{ }^{2}}{1.5 \times 10^{6}-f_{\text {in }}} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right]$,
where $f_{i n}$ is the input frequency and $V_{U}$ and $V_{L}$ and $f_{U}$ and $f_{L}$ are the upper and lower voltage and frequency settings of the instrument, respectively.

For frequencies of 1 kHz and above,
$V_{U N C}=0.00122+\left[\frac{f_{\text {in }}{ }^{2}}{\left(1.5 \times 10^{6}\right) F} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right]$,
where $f_{\text {in }}$ is the input frequency, $F$ is $f_{i n} / 1000$ rounded up to the nearest integer, and $V_{U}$ and $V_{L}$ and $f_{U}$ and $f_{L}$ are the upper and lower voltage and frequency settings of the instrument, respectively.

The uncertainty of the output in terms of frequency is
$H z=V_{U N C} \times \frac{f_{U}-f_{L}}{V_{U}-V_{L}}$,
where $V_{U N C}$ is the uncertainty in volts, and $V_{U}$ and $V_{L}$ and $f_{U}$ and $f_{L}$ are the upper and lower voltage and frequency settings of the instrument, respectively.
$\frac{V}{H z}=\frac{V_{U}-V_{L}}{f_{U}-f_{L}}$,
where $V_{U}$ and $V_{L}$ and $f_{U}$ and $f_{L}$ are the upper and lower voltage and frequency settings of the instrument, respectively.

For input frequencies below 1 kHz , the resolution at the output is:
$R=0.00122 \mathrm{~V}$ or $\left(\frac{f_{i n}{ }^{2}}{1.5 \times 10^{6}-f_{\text {in }}} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right)$,
whichever is greater, where $f_{i n}$ is the input frequency, $V_{U}$ and $V_{L}$ are the voltage settings, and $f_{U}$ and $f_{L}$ are the frequency settings.

For input frequencies at or above 1 kHz , resolution in volts at the output is:
0.00122 V or $\left(\frac{f_{\text {in }}{ }^{2}}{\left(1.5 \times 10^{6}\right) F} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right)$,
whichever is greater, where $f_{\text {in }}$ is the input frequency, $F$ is $f_{i n} / 1000$ rounded up to the nearest integer, $V_{U}$ and $V_{L}$ are the voltage settings, and $f_{U}$ and $f_{L}$ are the frequency settings.

Less than $1 \Omega$ at dc.
Less than or equal to 10 mV p-p independent of input frequency measured with a bandwidth of 0.1 Hz to 1 MHz . For slower rise-time signals such as sine waves, output noise depends on input-signal noise and amplitude since accurate timing is hampered by noise.

Response to an abrupt frequency change is $0.005 \mathrm{~s}+1 / f_{i n}$, where $f_{i n}$ is the frequency of the input, with the filter set to wideband. For other filter frequencies, add $5 / f_{c o}$, where $f_{c o}$ is the filter cutoff frequency.
0.001 s or $1 / f_{i n}$, where $f_{\text {in }}$ is the frequency of the input, whichever is a longer period of time.

The output will start to respond to a change in input frequency within 1 ms of each falling edge of the input signal for input frequencies above 1 kHz and within $1 \mathrm{~ms}+1 / f_{i n}$, where $f_{i n}$ is the frequency of the input, for frequencies below 1 kHz .

Selectable filter frequencies of $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz plus wideband (approximately 1.5 kHz ). The filter has a two-pole Bessel characteristic.

## FREQUENCY-TO-VOLTAGE CONVERSION

General

Frequency set points (upper and lower)

Following the input-conditioner-agc circuit, a microcontroller converts the input frequency to an equivalent ana$\log$ signal. The output is then scaled to a 14 -bit DAC based on the user-specified frequency and voltage set points.

These set points determine the input frequency at which the upper- and lower-voltage set points are reached. The

## Voltage set points (upper and lower)

frequency set points can be any two frequencies between 0 Hz and 50 kHz with a resolution of 1 Hz , and they can be within 10 Hz of each other.
These set points determine the output voltages corresponding to the upper- and lower-frequency set points, respectively. The voltage set points can be any two voltages from -10 V to +10 V with a resolution of 0.1 V , and they can be within 0.1 V of each other (the uppervoltage set point always being more positive than the lower voltage set point).

## CALIBRATION

When in the calibration mode, an internally generated calibration signal can be set to any frequency between 1 Hz and 50 kHz in 1 Hz increments. When enabled, the analog output assumes a value according to the frequency and voltage set points. The calibration signal can be toggled on and off when in the CAL mode of operation.


#### Abstract

ALIGNMENT Alignment of the Model 441A is performed using the two alignment modes of -10 V and +10 V . This feature allows field alignment and calibration of the instrument using only a voltmeter.


## FRONT PANEL

| Controls | The display/push button allows the operator to sequence <br> through the various setup screens. The round switch, <br> encoder, has both push-button and rotary action: the <br> push-button action moves the cursor to the digit to be <br> changed while the rotary action is used to change the <br> selected digit. All operating parameters are set using <br> these controls and are shown on the display. |
| :--- | :--- |
| Input LED | The LED on the front panel indicates that a valid input |
| frequency signal is present and that the output represents |  |
| the input frequency. |  |
| Display | The front-panel back-lit LCD display shows the input <br> frequency when in the operate mode. Five digits of reso- <br> lution are indicated - even at lower frequencies. If the <br> input frequency is unstable the less-significant digits will <br> vary. Table 2-2 lists all possible screens and their func- <br> tions. |

## RETENTION OF SETTINGS

All settings of the Model 441A are retained in nonvolatile memory.

## INPUT POWER

Range
10.5 V dc to 32 V dc , unregulated.
Over-voltage protection
Up to +60 V for $15 \mathrm{~s} ;+32 \mathrm{~V}$ and -50 V , continuously.

## Current (nominal) <br> 150 mA .

Protection
ENVIRONMENT
Emi/rfi
Operating temperature
Storage temperature
Altitude
Static-acceleration resistance
Shock resistance
Vibration resistance
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Protected against polarity reversal.

Internal rfi filters are provided on all connector leads.
$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
No limit with adequate heat dissipation.
$200 \mathrm{~m} / \mathrm{s}^{2}$ (approximately 20 g ) in any plane.
$200 \mathrm{~m} / \mathrm{s}^{2}$ (approximately 20 g ) for 11 ms in any plane.
$100 \mathrm{~m} / \mathrm{s}^{2}$ (approximately 10 g ) in any plane.

DIMENSIONS (SEE DRAWING 441-900)
Height (panel)
Height (case)
Width
Depth
Weight
60.2 mm (2.37").
$50.8 \mathrm{~mm}\left(2.00^{\prime \prime}\right)$.
28.4 mm (1.12").
$101.6 \mathrm{~mm}\left(4.00^{\prime \prime}\right)$.
$255 \mathrm{~g}(9 \mathrm{oz})$ nominal.

## COMPATIBILITY

The Model 441A will operate in all standard Ectron enclosures designed for Models 352 and 428 conditioner-amplifiers and the Model 451 LVDT-signal conditioner. Current enclosure products are Models E408-1, E408-6Y, and R408-14Y.

## Table 2-2 <br> Front-panel Screens

| Screen | Function |
| :---: | :---: |
| Operate | Default screen; input frequency ( fin ) and pulses per revolution are displayed. |
| $\mathrm{fu}^{\prime}$ and $\mathrm{f}_{\mathrm{L}}$ set points | Select fu and $\mathrm{f}_{\mathrm{L}}$ between 0 Hz and 50 kHz . |
| $V_{U}$ and $V_{L}$ set points | Select $\mathrm{V}_{\mathrm{U}}$ and $\mathrm{V}_{\mathrm{L}}$ between -10 V and +10 V . |
| Pulses/revolution | Select pulses per revolution for input signal less than 1 kHz to eliminate periodic error. This function can be turned OFF and ON. |
| Input sensitivity | Select input-voltage sensitivity of MIN (200 mV peak), MID ( 25 mV p ), MAX ( 10 mV p ). |
| Input bandwidth | Select input bandwidth of MIN ( 10 Hz ), MID ( 500 Hz ), MAX (WB). |
| Output filter | Select output-filter frequency of $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, or WB. |
| Calibration | Select calibration frequency between 1 Hz and 50 kHz and turn calibration ON or OFF. |
| Viewing angle | Set screen for best visibility. |
| Alignment, -10 V | Alignment between internal analog |
| Alignment, +10 V |  |
| Memory error | Appears only when there is a memory error. |
| Alignment required | Appears only when alignment is required. |
| Reset | Allow user to reset all parameters to the default settings. |
| Reset (momentary) | Appears for one second after a reset. |

## Section III Operation

## GENERAL

In this section, connections to the Model 441 A and the use of its controls are discussed. The name frequency-to-voltage converter is somewhat misleading in that the real value of this instrument lies not in its ability to measure frequency-instruments dedicated to that task do it better-and produce a corresponding voltage output-some frequency-measuring instruments do this, too-but in its ability to rapidly respond to changes in frequency and faithfully to produce a corresponding voltage. A more suitable name for the product then could be "a change in frequency producing a corresponding change in voltage" converter. This is awkward, so we shorten it.

## CONNECTIONS

The Model 441A uses a "D" subminiature fifteen-pin connector for all input and output connections. Table 3-1 summarizes these connections. These pin assignments are the same as for Ectron Models 352 and 428 conditioner-amplifiers. Therefore, unless special features have been incorporated that would preclude using the Model 441A, enclosures designed for these amplifiers are compatible with the Model 441A including Models E408 and R408. The Model 441A accepts power from 10.5 V dc to 32 V dc, so enclosures designed for either 12 V dc or 28 V dc can be used.

Table 3-1
Connector-pin Assignments

| Pin | Function | Pin | Function | Pin | Function |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | Input high | 6 | --- | 11 | Output low |
| 2 | Input low | $7^{*}$ | Power high | 12 | --- |
| 3 | Digital output high | $8^{*}$ |  | 13 | Case ground |
| 4 | Analog output high | 9 | Input guard | 14 | --- |
| 5 | --- | 10 | --- | 15 | Power low |

* Pins 7 and 8 are internally connected.


## OPERATIONAL-STATE DIAGRAM

Figure 3-1 is the operational-state diagram for the Model 441A. Starting at the top of the diagram all possible screens and operator choices at these screens are depicted. Additionally, it shows decisions made by the unit during normal operation. These decisions are diagnostic in nature; and if an error (such as a memory error) occurs, the user will be notified on the screen of the event.


Figure 3-1
Operational-state Diagram

Table 3-2
Default Settings and Limits

| Function | Parameter | Default Setting | Screen Limits |
| :---: | :---: | :---: | :---: |
| Frequency | Upper set point | 50000 Hz | 10 Hz to 50000 Hz and 10 Hz higher than the lowerfrequency set point |
|  | Lower set point | 0 Hz | 0 Hz to 49990 Hz and 10 Hz lower than the upperfrequency set point |
| Voltage | Upper set point | +10.0 V | $-9.9 \mathrm{~V} \text { to }+10 \mathrm{~V}$ and 0.1 V higher than the lowervoltage set point |
|  | Lower set point | 0 V | -10 V to +9.9 V and 0.1 V lower than the uppervoltage set point |
| Pulses/revolution | ON/OFF | OFF | ON, OFF |
|  | Pulses | 001 | 001-999 |
| Input sensitivity | Voltage | MAX | MIN, MID, MAX |
| Input filter | Frequency | MAX | MIN, MID, MAX |
| Output filter | Frequency | WB (wideband) | $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ plus WB |
| CAL | ON/OFF | OFF | ON, OFF |
|  | Frequency | $25,000 \mathrm{~Hz}$ | 0 Hz to $50,000 \mathrm{~Hz}$ |
| Alignment | -10 V | +000 | $\pm 750$ counts |
|  | +10 V | +000 | $\pm 750$ counts |
| View angle | Contrast | Midrange | Black \& blank |
| Reset | Default settings | NO | YES, NO |

## LIMITS VS SETTINGS

In setting the controls so that a certain frequency corresponds to a certain voltage and another higher frequency corresponds to a higher (more positive) voltage, the user should always remember that these set points do not set the limits of operation. Rather they determine the volts-per-hertz scaling of the output. The limits are fixed at 0 Hz to 63 kHz and -11 V to +11 V . Table 3-2 lists the default settings and limits for the Model 441A. Except for voltage alignment, these are the settings of a new unit, and they are the settings (including voltage alignment) when a RESET is performed. New units are aligned when shipped.

Figure 3-2
View Angle
Normal and extreme view angles


## VIEW ANGLE

Although this screen is actually considered a secondary screen, accessed by pressing and holding the display for more than one second, it is discussed first because the possibility exists that if the instrument is in an extreme-temperature environment, the screen will not be visible when the unit is energized. It may be black or it may be blank. If this occurs, press and hold the display for more than one second, and then rotate (counterclockwise if too dark, and clockwise if too light) the encoder (round knob) until the words VIEW ANGLE are visible.

At this point, the user can either wait approximately twenty seconds (or press the display twice or press and hold the display for more than one second) to return to the operate screen.

## CONTROLLING THE MODEL 441A

The controls on the front panel consist of a display, which has the additional function of screen selection, and the encoder, which has the dual function of character selection and control. Using these two controls is all that is necessary to fully operate the Model 441A.

## Display

As stated above, the display has the dual function of display and screen selection. There are two ways to select a screen. One is to press and release. This selects
the screens that the user would typically access while operating the Model 441A. The other is to press and hold the display for more than one second. This evokes a set of secondary screens to set parameters less frequently changed.

## Encoder

The round encoder has the dual function of character selection and control. Once a screen has been selected, a blinking cursor will appear that will cover one or more characters. The cursor always first appears on the top left-most character. Pressing the encoder moves the cursor across the screen and down through all the changeable characters and back to the top left. If the user inadvertently steps past the character to be changed, simply continue pressing the encoder until the cursor is where he or she wants it to be.

Once the character to change has been selected, rotate the encoder either clockwise or counterclockwise until the character is correct. When changing numbers, rotating the encoder can change digits to either side of the digit being changed. For example, if the user is changing one of the voltage set points, and the cursor is on the tenths digit, then changing it from 9 to 0 will increment the ones digit. The user should remember that the Model 441A screen values will not violate the limits shown in Table 3-2. If he or she is rotating the encoder and the character under the cursor is not changing as expected, the most likely cause is that the Model 441A is being asked to exceed a limit.
The encoder has two additional functions when the user wants to reset the default parameters. When at the screen to align +10 V , pressing and holding the encoder for more than one second evokes the RESET screen, which gives the user the opportunity to perform a reset. If the user then chooses Yes and presses the encoder, a reset is performed.
Once a character has been changed, and the operate screen restored, the nonvolatile memory is updated with the new information. However, if power is interrupted between the time of character change and return to the OPERATE screen, memory is not updated.

The following paragraphs discuss all the screens of the Model 441A. How to get to each screen from the operate screen, how to set each screen, and how to return to the operate screen are presented.

Figure 3-3
Operate
Input frequency of 123.45 Hz and PR set to 96


## OPERATE SCREEN

When the Model 441A is energized this screen is normally displayed. When the green light is on, the number on the screen is the frequency of the input signal. It can be any frequency from 1 Hz to 63 kHz . Below 1 Hz , zeroes are displayed; above 63 kHz , dashes are displayed. Full floating-point presentation is employed. Also displayed is PR (pulses per revolution) and the current setting of the pulses-per-revolution (digital periodic-error) filter.

Figure 3-4
Frequency Set
Upper-frequency set point of $16,475 \mathrm{~Hz}$ and a lowerfrequency set point of 9832 Hz


## FREQUENCY-SET SCREEN

Function
From the OPERATE screen
To the OPERATE screen

Defaults
Discussion

Operation

To set the upper- and lower-frequency set points.
Press the display once.
Press the display seven times or wait approximately twenty seconds.

50000 Hz and 00000 Hz .
The upper-frequency set point can be any frequency from 10 Hz to 50 kHz while the lower-frequency set point can be any frequency from 0 Hz to $49,990 \mathrm{~Hz}$.
There are ten possible characters to set on this screen. When the screen is first displayed, the blinking cursor is on the 10,000 's digit of the upper-frequency set point. Press (and release) the encoder until the cursor is at the digit to be changed. Then, rotate the encoder until that
digit is set. Continue until all the digits are set. Remember that the two frequencies can never be closer to each other than 10 Hz .

Figure 3-5
Voltage Set
Upper-voltage set point of +3.4 V and a lower-voltage set point -1.7 V


## VOLTAGE-SET SCREEN

Function
From the OPERATE screen
To the OPERATE screen

Defaults
Discussion

## Operation

To set the upper- and lower-voltage set points.
Press the display twice.
Press the display six times or wait approximately twenty seconds.
+10.0 V and $\mathbf{+ 0 0 . 0} \mathrm{V}$.
The upper-voltage set point can be any voltage from -9.9 V to +10.0 V while the lower-voltage set point can be any voltage from -10 V to +9.9 V .

There are four possible characters to set on this screen. When the screen is first displayed, the blinking cursor is on the 1's digit of the upper-voltage set point. Press (and release) the encoder until the cursor is at the digit to be changed. Then, rotate the encoder until that digit is set. Continue until all the digits are set. Remember that the two voltages cannot be closer to each other than 0.1 V .

## INPUT-SIGNAL SCREENS

There are three screens to filter and condition the input signal to enhance the performance of the Model 441A. The first, PULSES/REVolution, eliminates input-signal error due to periodic, repetitive variations or errors. The next two screens, INPUT SENSitivity and INPUT B/W, work in conjunction with each other to provide the user nine combinations of input conditioning for the input signal. See the Applications section for further discussion.

## Pulses/Revolution Screen

To set the number of pulses of the input signal that occur during one revolution (or cycle).

From the OPERATE screen Press the display three times.

Figure 3-6
Pulses/Rev
P/R set ON and number of pulses set to 96

To the OPERATE screen

Default
Discussion

## Operation

Figure 3-7
Input Sensitivity
Input sensitivity set to MAX

Press the display five times or wait approximately twenty seconds.

OFF, 001.
The pulses/revolution filter can be set ON or OFF, and the number of pulses can be set from 1 to 999 . Note that even though the PULSES/REV has been turned ON, this function ceases to operate when the input signal is outside the range of 1 Hz to 1 kHz (i. e. the time between two consecutive input pulses is less than 1 ms or greater than 1 s ). It will reactivate automatically if and when the input signal returns to within that range. Once this digital filter has been turned $\mathbf{O N}$ or internally reactivated, one revolution must occur before the output of the Model 441A is averaged.

Pressing the encoder moves the cursor from one character to the next, (ON or OFF is the first choice). Then rotate the encoder for the number of pulses per cycle.


To set the input-voltage sensitivity.
Press the display four times.
Press the display four times or wait approximately twenty seconds.
Default

Discussion
Operation

Figure 3-8
Input bandwidth
Input bandwidth set to MID (midrange)

The input sensitivity can be set to MIN, MID, or MAX. Since there is only one character to change on this screen, the encoder push-button action has no function. Simply rotate the encoder to select the desired sensitivity.


Input-B/W (Filter) Screen
Function
From the OPERATE screen
To the OPERATE screen
Default
Discussion
Operation

Figure 3-9
Output filter
Output filter cutoff frequency of 100 Hz

To select the input filter.
Press the display five times.
Press the display three times or wait approximately twenty seconds.
MAX.
The input bandwidth can be set to MIN, MID, or MAX.
Since there is only one character to change on this screen, the encoder push-button action has no function. Simply rotate the encoder to select the desired filter.

## OUTPUT-FILTER SCREEN

Function
From the OPERATE screen
To the OPERATE screen

Default

To set the output filter.
Press the display six times.
Press the display twice or wait approximately twenty seconds.
WB (wideband).

Discussion

Operation

Figure 3-10
CAL screen
CAL "on" and CAL frequency set to 12.5 kHz

## CAL SCREEN

Function
From the operate screen
To the operate screen

Defaults
Discussion

## Operation

The filter can be set to $\mathbf{1} \mathrm{Hz}, \mathbf{1 0 ~ H z}, \mathbf{1 0 0} \mathrm{Hz}$, or WB, which is approximately 1.5 kHz .

Since there is only one character to change on this screen, the encoder push-button action has no function. Simply rotate the encoder to select the desired filter.


To set the calibration frequency.
Press the display seven times.
Press the display once or wait approximately twenty seconds.

OFF, 25000 Hz.
The calibration frequency is used in conjunction with the upper and lower set points of frequency and voltage. It simulates the frequency and puts out the corresponding voltage when ON. For example, if the user has frequency set points of 1 kHz and 2 kHz and voltage set points of 1 V and 2 V , he or she may want to set a CAL frequency of either the upper or lower frequency set points or perhaps the midpoint, 1.5 kHz . This is not to say that the cal frequency must be within the frequency set points.

First, set the CAL function to ON or OFF by rotating the encoder, select the digit or digits to be set using the push-button function of the encoder, and then set them with the rotary function.

## SECONDARY SCREENS

Access to these screens, VIEW ANGLE and $\pm \mathbf{1 0}$ V ALIGNMENT is by pressing and holding the display while at any of the primary displays. The sequence is VIEW ANGLE, -10 V ALIGNMENT, and +10 V ALIGNMENT. Adjustment of VIEW ANGLE is discussed on Page 3-4.

Figure 3-11
Adjust +10 V screen used to align the output with internal software


Ten-volt Alignment
Function
The alignment screens allow the operator to align the output of the Model 441A with its internal software using a voltmeter.

From the OPERATE screen
Press and hold the display for more than one second and then press the display once for negative 10 V alignment and twice for positive 10 V alignment.

To the OPERATE screen

Default
Operation

From the negative 10 V alignment screen, press the display twice; from the positive 10 V screen, once.
+000.
When at the negative 10 V alignment screen, connect a DMM to the output of the Model 441A and then using the encoder, adjust the output for $-10 \mathrm{~V} \pm 0.005 \mathrm{~V}$. Next press the display once to go to positive 10 V alignment screen and adjust the encoder for $+10 \mathrm{~V} \pm 0.005 \mathrm{~V}$. The three-digit number on each display is a reference number for the convenience of the user. The user may want to note the readings once the alignment is made. Then if an alignment is required in the future and a voltmeter is unavailable, the user can simply reset the numbers to those noted above with confidence that the unit is properly aligned.

There are four additional secondary screens: MEMORY ERROR, RESET, ALIGNMENT REQUIRED, and a temporary screen seen only after a reset is made.

Figure 3-12
The ALIGNMENT REQUIRED screen will appear so long as $\pm 10 \mathrm{~V}$ alignment is necessary.

The displayed digits are for factory use.


Figure 3-13
The MEMORY-ERROR screen will appear if an error in nonvolatile memory occurs.


MEMORY ERROR is inaccessible by the user and will normally never be seen. As is shown in Figure 3-1, each time the Model 441A is energized, nonvolatile memory is tested. Normally, it will pass the test and will immediately display the OPERATE screen. However, should a memory error occur, the MEMORY ERROR screen will be displayed. To advance past this screen, press the display or press or turn the encoder. The Model 441A will then restore the default settings (Table 3-2) and go to the ALIGNMENT REQUIRED screen. Again the operator can press the display or press or turn the encoder, and the unit will advance to the OPERATE screen. Until the two 10 V alignments are performed, the unit will stop at the ALIGNMENT REQUIRED screen each time power is applied.
If the user chooses, the default settings can be restored by going to the RESET screen and selecting $\mathbf{Y}$ (yes) PUSH KNOB.

Figure 3-14

> Use the RESET screen to restore the default parameters.


## Reset

Function
To restore the default settings.
From the OPERATE screen
Press and hold the display until VIEW ANGLE is displayed, press the display twice more (plus 10 V alignment), and then press and hold the encoder for one second or more.

To return to the OPERATE Press the display when the screen displays $\mathbf{N}$ (no) PUSH screen (without having performed a reset)

To return to the OPERATE Press the encoder when the screen displays $\mathbf{Y}$ (yes) screen (having performed PUSH KNOB. As shown in the operational-state diaa reset) gram, the operate screen is displayed only after a momentary RESET screen and the alignment-required
screen has been cleared by pressing the display or pressing or turning the encoder.

Operation

## Discussion

## ENCLOSURES

Rotate the encoder to select $\mathbf{Y}$ (yes) PUSH KNOB or N (no) PUSH DISPlay.

Only when the user has selected Y PUSH KNOB and has pressed the encoder will a reset be performed. Then the unit will display the ALIGNMENT REQUIRED screen, and the user can proceed as previously described.

## Model E408-1

The Model E408-1 is a single-unit mount designed to mount directly to a bulkhead or to a DIN rail (Option D). It can be mounted on three of its six sides with screws (10-32 machine screws are recommended) in any aspect. The installed unit can be right-side up or down within the mount as well. A right-angle hooded DAM-15S connector is provided for cabling. The hooded shell can be mounted right-side up or down, too, depending on where the user would like the cabling to exit. Drawing 408-900 shows all unit dimensions as well as mounting dimensions.

## Model E408-6

The Model E408-6 enclosure is a six-channel bench-top unit, which will hold Models 352, 428, 441A, 441AL, and 451 in any combination. Being small, lightweight, and powered either by ac or dc, the enclosure is well suited for use in the field as well as the laboratory.

Features

- Inside the top cover, which is held on by four captive screws, are terminals for each channel for bridge completion, CAL, and bridge balance (for Model 352).
- Channel-input and dc-power connectors are PT series, and output connectors are BNC. An ac power cord and mating connectors for all but the BNC's are provided.
- Front-panel controls include power on-off (for ac and externally applied dc); ALL ZERO for Model 428 equipped with autozero (Option O); and CAL with positions of,+- , and OPR (operate), which is functional when a CAL resistor and any bridge configuration are installed or connected. Calibration is input shunt calibration by means of electronically switching a customerinstalled CAL resistor in parallel with selected arms of the bridge to produce either a plus or a minus calibration.
- Also included are provisions for bridge balance for units so equipped and output frequency-response control for Model 352 amplifier-conditioners.
- As with all Ectron enclosures, the Model E408-6 does not degrade any plug-in specifications.
- Model E408-6Y has an internal 12 V dc power supply, and the E408-6X has a power supply of 28 V dc.
- When setting up the Model E408-6 for operation, refer to either Drawing 408-600 (for 12 V dc systems) or 408-601 ( 28 V dc systems) at the rear of this manual for settings of plug jumper W1 (W2 is not active when using the Model 441A in this enclosure). Also depicted are typical input configurations the customer may want to use.


## Model R408-14

The Model R408-14 enclosure is a 14 -channel $3-1 / 2$-inch-high, 19 -inch-wide rack-mount unit that holds Models 352, 428, 441A, 441AL, and 451 in any combination. It also is powered by either dc or ac and comes in both 12 V dc (Option Y ) and 28 V dc (Option X ) versions.

Features

- Beneath the top cover are terminals for each channel for bridge completion, CAL, and bridge balance (for Model 352).
- Channel-input and dc-power connectors are PT series, and output connectors are BNC. An ac power cord and mating connectors for all but the BNC's are provided.
- Front-panel controls include power on-off (for ac and externally applied dc); ALL ZERO for Model 428 equipped with autozero (Option O); and CAL with positions of,+- , and OPR (operate), which is functional when a CAL resistor and any bridge configuration are installed or connected. Calibration is input shunt calibration by means of electronically switching a customerinstalled CAL resistor in parallel with selected arms of the bridge to produce either a plus or a minus calibration.
- Also included are provisions for bridge balance for units so equipped and output frequency-response control for Model 352 amplifier-conditioners.
- As with all Ectron enclosures, the Model R408-14 does not degrade the specifications of any plug-in.
- Model R408-14Y has an internal 12 V dc power supply, and the R408-14X has a power supply of 28 V dc.
- When setting up the Model R408-14 for operation, refer to either Drawing 408-605 (for 12 V dc systems) or 408-606 ( 28 V dc systems) at the rear of this manual for settings of plug jumper W1 (W2 is not active when using the Model 441A in this enclosure). Also depicted are typical input configurations the customer may want to use.


## Section IV Applications

## GENERAL

To best understand how to apply the Model 441A, it is important to know some characteristics of its design. This information is available in Section V, Theory of Operation, where some of the features of the design as they apply to application of this product are covered.

## INPUT-SIGNAL CONDITIONER

The job of the input-conditioner section of this instrument is to accommodate input signals with a variety of waveforms, frequencies from 1 Hz to 50 kHz plus harmonics, and amplitudes from 10 mV peak to 100 V peak. This must be accomplished such that the frequency integrity of the input signal is carefully maintained, even while short-term frequency and amplitude variations occur. Furthermore, the input must be adaptable to many signal sources and grounding conditions.

To minimize ground-loop problems the input was made differential and isolated from case and power ground. Although signal levels are several-orders-of-magnitude greater than those of transducer amplifiers, noise effects are still very important if accuracy and response are required. This is because noise on the input signal causes unavoidable jitter in the conversion process. (Filtering reduces this jitter but at a sacrifice of response time.)
Three controls are provided to improve conversion stability. These are a three-step inputsensitivity control, a three-step input-bandwidth control, and a digital periodic filter that eliminates cyclic variations in the input signal.

An automatic-gain-control (AGC) circuit converts the input-frequency waveform to a waveform of relatively constant amplitude. Since zero crossings determine the action of the fre-quency-to-voltage converter, these must be carefully preserved in the signal conditioner. Then a squaring circuit increases the rise and fall times of the waveform.

Since a sine wave does not have an abrupt wave front, frequency conversion for these signals is not so accurate as for square or pulse waveforms. Thus, a low-amplitude sine-wave signal will be more susceptible to noise and will generally show more noise on the output analog signal as well as the frequency read-out on the display.

Square and pulse waveforms will give the most noise-free operation. The duty cycle of pulse signals should be greater than about $5 \%$. Minimum acceptable pulse width is approximately $5 \mu \mathrm{~s}$. Although there is no minimum for rise or fall time, little is gained below about $0.6 \mu \mathrm{~s}$.

## INPUT SIGNAL, GROUNDING, AND SHIELDING

Four independent grounds exist within the Model 441A. As a result, flexibility exists in adapting this unit to a variety of input signal sources. The available ground systems are:

- Input (two input leads and shield).
- Output (output high and low).
- Dc power (plus and common).
- Case.

Proper use of these grounds will result in lower noise and more accurate data. (See the paragraphs under uncertainty, resolution, and noise in this section.) However, incorrect grounding will increase noise and degrade data accuracy. Some grounding recommendations follow:

Input

Output

Power

Case

In any signal system, use only one ground point. This applies to the input and output signal systems. The signal input can be "floated off" ground to 100 V dc or peak ac and grounded anywhere that suits the application. The input-shield pin (Pin 9) should be tied to the sig-nal-source common. Shielding and use of twisted-pair leads are recommended if the input amplitude is below 100 mV or the electrical environment is poor.

The high- and low-output leads can and usually should be grounded at the load device. Depending on the load device, connecting this common to earth ground or dc-power-supply ground can minimize noise.

The negative of the dc power source should be connected to earth or power-line ground. In Ectron enclosures, this is accomplished by proper use of the third-wire-ground pin on the power cord.

Case ground (Pin 5) should be connected to earth or power ground. This is done in Ectron enclosures.

## EMI PROTECTION

All connections to the converter go through emi-rfi filters to minimize the effects of rf noise. The filter frequency coverage starts with about -3 dB of attenuation at 1 MHz , increasing to -66 dB at 200 MHz and beyond. Emi-rfi filtering is particularly important in vehicle testing, especially involving an engine where wideband emissions are generally high.

## FREQUENCY-TO-ANALOG CONVERSION

The digital section receives the conditioned and shaped input-frequency signal. First, fre-quency-to-digital conversion takes place followed by digital-to-analog conversion. Both of these digital-domain processes are governed by the user-selected frequency and voltage set points.

## OUTPUT ANALOG FILTER AND OUTPUT STAGE

To smooth the resulting analog signal, four user-selectable filter frequencies are available: $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz having second-order Bessel characteristics and a wideband (WB) one-pole filter at approximately 1500 Hz . The analog output stage can drive loads at up to $\pm 10 \mathrm{~V}$ at 10 mA . A short circuit on the output for an indefinite period will not harm the instrument.

## FREQUENCY AND VOLTAGE SET POINTS

The frequency set points determine the input frequency at which the upper- and lower-voltage set points are reached. The frequency set points can be any frequency between 0 Hz and 50 kHz with a resolution of 1 Hz . The two frequency set points can be within 10 Hz .

Similarly, the voltage set points determine the output voltages corresponding to the upperand lower-frequency set points, respectively. The voltage set points can be any voltage from -10 V to +10 V with a resolution of 0.1 V . The two voltage set points can be within 0.1 V . Table 4-1 illustrates converter operation with hypothetical frequency and voltage set points.

Table 4-1
Input Frequency vs Output Voltage (Example)

| Frequency set points |  | Voltage set points |  |
| :---: | :---: | :---: | :---: |
| Upper $\left(f_{U}\right)$ | 2000 Hz |  |  |
| Lower $\left(f_{L}\right)$ | 1000 Hz |  |  |$\quad$| Upper $\left(V_{U}\right)$ |  |
| :---: | :---: |
| $+5 \mathrm{~V}$ |  |
| Lower $\left(V_{L}\right)$ |  |
| 0 V |  |$]$

Should the application require it, the output can be set to provide a bipolar output (e.g., for a certain frequency range the output can be set to go from -5.000 V to +5.000 V ). Similarly, the output voltage could be set to be all negative. Note that the higher frequency will always produce the more positive output voltage.
Because the minimum difference between the upper- and lower-frequency settings is 10 Hz , and the minimum difference between the upper- and lower-voltage settings is 0.1 V , it is possible to set $f_{U}$ at 1000 Hz and $f_{L}$ at $990 \mathrm{~Hz}, V_{U}$ to 1.0 V and $V_{L}=0.9 \mathrm{~V}$, thus giving a frequency-to-voltage sensitivity of $100 \mathrm{~Hz} / \mathrm{V}$. Exactly the same results would be obtained if the settings were $f_{U}=1500 \mathrm{~Hz}, f_{L}=900 \mathrm{~Hz}, V_{U}=6 \mathrm{~V}$, and $V_{L}=0 \mathrm{~V}$. The following section shows that extreme settings can result in poor resolution and noise.

## NOISE

In addition to frequency jitter of the input signal, noise at the output of the Model 441A will be a combination of input signal noise, waveform character, signal amplitude, and instrument settings. For square and pulse waveforms, output noise should be well under the 10 mV p-p specification assuming sharp rise times and good pulse-to-pulse frequency and phase stability. Ideally, rise times should be under $5 \mu$ s to utilize the extraordinary conversion accuracy, resolution, and stability of this instrument. A further source of noise can be grounding problems of input and output signal circuits.
Despite the fact that the amplifier's input is differential, input-to-output cross talk can exist external to the amplifier. Good wiring practices should be followed to minimize this effect (see Page 4-1, INPUT SIGNAL GROUNDING AND SHIELDING).
An additional source of input-to-output crosstalk is an inadequate case ground. All pins of the connector incorporate emf-rfi filters. The capacitors associated with these filters connect to case ground (Pin 5 on the DA connector). Consequently, if no case ground exists, signals from one pin will be coupled to other pins by these capacitors. For example, if a sharp-rise


Figure 4-1
Maximum Uncertainty for Various Frequencies
square-wave signal exists on the signal input pins, pulses will be seen on the analog output signal unless a good case ground exists. Ectron enclosures provide such a ground assuming input power, either ac or dc, includes a good ground. Note that neither the input nor output filters of the Model 441A will have much effect on these feed-through pulses.
For any frequency-to-voltage converter with fast response, sine-wave signals are the most difficult from which to produce a low-noise output. This is because the slightest noise will cause jitter in the "wave to wave" timing.
If a 10 mV p-p sine wave has even $100 \mu \mathrm{~V}$ of amplitude noise, then timing errors can cause the frequency conversion to produce volts of output noise when the frequency input is high and the frequency set-points difference is small. Figures 4-4 and 4-5 indicate expected output noise for "clean" sine-wave signals of 10 mV p-p and 1 V p-p, respectively.
To reduce the output noise under difficult input signal conditions, the operator should use as much filtering as possible and should set a wide frequency-set-points difference. Another possibility is to reverse the input leads to the unit. This may improve the waveform at the transition point of the converter and produce less output noise.


Figure 4-2

## Worst-case Resolution for Various Frequencies

If the input waveform is sawtooth, then output noise will be best if the slow-rise portion of the waveform is positive going, and the abrupt fall is negative going. This is true since the internal conversion circuit of the Model 441A uses the fall time for triggering. However, if the waveform is the reverse, slow fall and abrupt rise, simply reverse the frequency-input leads. Since the input is differential, this reversal will not cause noise or ground-loop problems.

## UNCERTAINTY AND RESOLUTION

Output analog uncertainty is within $\pm 0.00122+\left[\frac{\left(1.5 \times 10^{6}\right) f_{\text {in }}}{\left(1.5 \times 10^{6}\right)-f_{\text {in }}}-f_{\text {in }}\right] \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}$ for frequencies less than 1 kHz , and $\pm 0.00122+\left[\frac{f_{\text {in }}{ }^{2}}{\left(1.5 \times 10^{6}\right) F} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right]$ for frequencies of 1 kHz and above. Output resolution for input frequencies of 1 kHz or below is the greater of 0.0012 V or $\left(\frac{f_{\text {in }}{ }^{2}}{1.5 \times 10^{6}} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right)$, resolution for frequencies above 1 kHz is 0.0012 V


Figure 4-3
Maximum of Uncertainty and Resolution for Various Frequencies (Figures 4-1 and 4-2 Combined)
or $\left(\frac{f_{\text {in }}{ }^{2}}{1500 F} \times \frac{V_{U}-V_{L}}{f_{U}-f_{L}}\right)$, and output analog noise is less than 10 mV p-p independent of input frequency measured in a bandwidth of 0.1 Hz to 1 MHz assuming a clean, fast, zerocrossing signal. ${ }^{1}$ The preferred signal is a square wave or a pulse with fast fall times (the internal detector operates on the negative-going portion of the waveform.) For slow-rise-time signals including sine waves, output noise depends on input-signal amplitude and noise, since accurate timing determination is hampered by noise.
Figures 4-1 through 4-5 illustrate the variation of uncertainty, resolution, and noise for an output of 0 V to $5 \mathrm{~V}\left(V_{L}\right.$ to $\left.V_{U}\right)$. Different input frequencies $\left(f_{i n}\right)$ are plotted against frequency set-points differences $\left(f_{U}-f_{L}\right)$.

Figure 4-1 illustrates the effect on uncertainty of different input frequencies and with different frequency-set-points difference $\left(f_{U}-f_{L}\right)$. Output-voltage set points are assumed to be 0 V

1 For the four equations, $f_{i n}$ is the input frequency; $F$ is $f_{\text {in }} / 1000$, rounded down to the nearest integer; $V_{U}$ and $V_{L}$ are the upper and lower voltage settings; and $f_{U}$ and $f_{L}$ are the upper and lower frequency settings.


Figure 4-4
Maximum Output Noise with a 10 mV Sine-wave Input
and +5 V . Note that for the plot for an input frequency of 10 kHz , uncertainty reaches 0.023 V when ( $f_{U}-f_{L}$ ) reaches 100 Hz . This could be for an upper-frequency setting of $10,050 \mathrm{~Hz}$ and a lower-frequency setting of 9950 Hz . Even for a frequency setting difference of 10 Hz , uncertainty at 10 kHz only reaches a total of 0.27 V out of a full scale of 0 V to 5 V .
Figure 4-2 shows that resolution reaches a worst case of 0.015 V for input frequencies of up to $2,000 \mathrm{~Hz}$ and a frequency set-points difference of 1000 Hz or higher. Again, output voltage set points are 0 V and +5 V . However, as input frequency increases and the frequency set-points difference decreases, resolution degrades. Fortunately, extreme sets of conditions should seldom occur.
Figure $4-3$ is a combination of Figures $4-1$ and $4-2$ to illustrate the worst case the user can expect at extreme settings.


Figure 4-5
Maximum Output Noise with a 1 V Sine-wave Input

## FILTERING

There are three types of selectable filters in the Model 441A: input, output, and periodic-error. The first two are analog low-pass filters, and the last is a digital filter. These filters have the following characteristics and application.

Input Bandwidth Filter
This filter is used to reduce noise on the input frequency signal to provide reliable triggering. The screens are labeled MIN, MID, and MAX bandwidth corresponding to a single-pole low-pass filter with approximate corner frequencies of 10 Hz (MIN), 500 Hz (MID), and 150 kHz (MAX). The proper setting for this filter depends on the noise frequencies and their relation to the desired signal and is usually set by trial and error in conjunction with the sensitivity control INPUT SENSitivity. Use the lowest bandwidth setting that provides reliable triggering. Frequently, best operation is obtained with the filter frequency set below that of the signal of
interest. During setup, the lowest and highest signal frequencies should be tested for proper operation.

This two-pole active filter is used to reduce noise of the output analog signal. Corner frequencies are 1 Hz , $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, and WB (approximately 1.5 kHz ). Since the lower the filter frequency the slower the response, a compromise must be made between noise and response. (Response of the digital filter adds to the response of the analog output filter.) Table 4-2 indicates the response to a step-frequency change for the four filter frequencies assuming the digital filter is set to a PULSES/REVolution of 001. In general, the user should select the lowest filter setting consistent with the response requirements of the application.

Table 4-2
Response Time Versus Output Filter Setting

| Output Filter in Hz | Approximate Response Time <br> in Seconds |
| :---: | :---: |
| $\mathrm{WB}(1500)$ | $0.005^{\star}$ |
| 100 | $0.055^{\star}$ |
| 10 | $0.5^{\star}$ |
| 1 | $5.0^{\star}$ |
| add $1 / t_{\text {in }}$ where $f_{\text {in }}$ is the input frequency |  |

## Digital Filter

For operational frequencies up to 1 kHz , this unique filter uses digital averaging of the converted input signal to eliminate the unwanted effects of a signal whose frequency varies in a periodic manner. For example, the output frequency of a paddle-wheel flow sensor usually changes as the wheel rotates because the paddles are not evenly spaced. If the sensor has eight paddles, its output will consist of a repeating sequence of eight pulses. If this signal is fed to a frequency-to-voltage converter without this filtering, the output analog signal will have a cyclic component with a period equal to the period of rotation of the device. However, by using the digital filter with an eight-pulse running average, the period variation is averaged out and a much more stable analog output is obtained.

Figure 4-6 illustrates the function of the digital filter for a signal from an eight-paddle sensor. At first, the unfiltered (stair-step) analog output varies about 5 V ; then the speed of rotation is increased so the signal varies about 5.4 V. Keying in eight pulses per revolution


Figure 4-6
Effects of the Digital (Periodic-error) Filter
changes the analog output to that shown by the smoothed trace. Note that the second cycle of eight steps is changed to a steady 5.0 V level. When the frequency abruptly changes to the 5.4 V level, the digitally-averaged signal linearly changes so that in eight steps, the 5.4 V level is reached. As a result of the digital filter, the variation (noise) caused by the eight-step cycle is eliminated. During and after the transition to a new level, eight-step averaging continues.

The stair-step wave form during the frequency change in Figure $4-6$ is a result of the update rate of the unit, which when period averaging is allowed, is longer than 1 ms . That is, period averaging only works below 1 kHz .

The filtering effect of digital averaging is useful in reducing random noise signals as well as periodic signals. Response time will be reduced in direct proportion to the Sample Count setting although response time will change with input frequency. For example, for an eightcount sample period and an input frequency of 64 Hz the response time (to reach final value) will be $1 / 8 \mathrm{~s}$. For a frequency of 6400 Hz the response time will be $1 / 800 \mathrm{~s}$.


Figure 4-7
Filtering Scheme for ABS Testing
The Model 441A allows the user to set the number of cycles of the period filter from 001 to 999 ( 001 being the same as OFF) by setting the number as the PULSES / REVolution. (See Section III for instructions.)

For frequencies exceeding 1 kHz , the periodic filter is automatically turned off. This means that anytime the time interval between two pulses is less than 1 ms , the filter is shut off (even though it has been activated at the front panel by the user) and will automatically turn on (provided it is programmed on by the user) if and when the time interval exceeds 1 ms . Then, as soon as the required number of pulses (determined by the pulses-per-revolution setting) has been received as input, the output will again show the elimination of the periodic error. The user who is operating near 1 kHz should be mindful of this operation.

Applications for the period filter include flowmeters of the turbine or propeller type, rotating-cup anemometers, wheel-speed sensors of the cogged-wheel type (ABS systems) used on automobiles, rotary optical encoders, shaft torque detectors, etc. Usually, periodic errors are caused by irregular spacing of the steps of the rotating element of the device, but they can also be caused by lack of concentricity between the rotating element and the pick-off (run out).

Another application would be a jet turbine engine whose rpm needs to be known or controlled exactly. A cogged


Figure 4-8
Filter Circuit for ABS Testing
wheel rides on the engine shaft that has spacing irregularities. This causes a slight variation in the output pulse spacing and would produce noise in the resulting analog output of the Model 441A. This noise would prevent knowing the exact rpm. If the wheel has 40 cogs, using a PULSES / REVolution setting of $\mathbf{0 4 0}$ would eliminate the noise caused by the spacing irregularities. Therefore, using digital averaging allows the output to be as exact as the inherent high accuracy and stability of the Model 441A.

## SELECTABLE INPUT SENSITIVITY

This control adjusts the gain of the input amplifier and is useful when noise is causing erratic triggering. This can occur when no signal is present or when the signal level is low. Usually, the optimum setting of this control is made in conjunction with the input filter setting. Gain decreases by a factor of approximately $6: 1$ from the MAX setting to the MID setting. A further decrease of approximately $8: 1$ occurs between the MID setting and the MIN setting.

## RESPONSE TIME

Response to an abrupt frequency change is $0.005 \mathrm{~s}+1 / f_{\text {new }}$ with the output filter set to wideband ( $f_{\text {new }}$ is the new frequency). Thus, if the input frequency is 10 Hz and suddenly changes to 1000 Hz , the analog output will assume the new value in less than 6 ms . For lower filter frequencies, $5 / f_{c o}$ (in seconds) must be added.

## UPDATE RATE

The update rate is 1 ms or $1 / f_{i n}$, whichever is greater.


Figure 4-9
Strip-chart Recording of ABS Action

## LATENCY

Latency is the time required for the output to respond to a change in input frequency. Latency in the Model 441A is within 1 ms of each falling edge of the input signal for input frequencies above 1 kHz , and within $1 \mathrm{~ms}+1 / f_{i n}$ for frequencies below 1 kHz .

## FRONT-PANEL INDICATION

The display on the front panel indicates the frequency of the incoming signal with a resolution of five digits and the pulses per revolution setting of the periodic-error filter. Displaying the input frequency serves several purposes during setup and operation of a test. First, it gives the operator a "warm and fuzzy" feeling knowing that everything works. It confirms that the pickup device is working and connections to the converter are correct. If the frequency is approximately correct, it shows that the signal level is probably acceptable to the converter. During the test, an operator can monitor the read-out to get a quick look at the frequency data. The green front-panel LED will extinguish if no signal is present, and the display will read 0.0000 . If the input signal exceeds 50 kHz the read-out will continue to read correctly until the frequency exceeds 63 kHz . Above this frequency, the read-out will show dashes. (The analog output also will continue to be correct until it reaches approximately 11 V .) The setting of periodic filter has also been selected for this screen because an incorrect setting such as the wrong number of pulses per revolution increases noise as can using it above 1 kHz .

## CALIBRATION

The CALibration mode allows the operator to set a calibration signal from 0 Hz to 50 kHz in 1 Hz increments. When CAL is enabled, the analog output assumes a voltage value of the CAL frequency in accordance with the frequency and voltage set points. The calibration circuit does not test the input-signal-conditioning circuitry and ignores any input signal.
To turn on the calibration signal, go to the CAL screen, adjust the frequency, and set OFF-ON to ON. At this time, the output will assume the analog value corresponding to the frequency and voltage set conditions. This output and the CAL screen will remain until it is exited or the CAL is toggled OFF.

The CAL mode can be used as a highly accurate linearity check of the equipment that follows the Model 441A. First, perform the voltage alignment as described in Section III, and then step the calibration settings over the range of interest, perhaps from zero to full scale in $10 \%$ increments. This test should produce a system linearity check within an uncertainty of $0.1 \%$ of full scale.

## VEHICLE APPLICATIONS

Because the modern automobile generates a great variety of sometimes intense noise signals, acquiring good data, especially from low-level signals, requires extraordinary measures. Vehicle noise usually involves both electromagnetic and electrostatic signals covering the spectrum from subaudio to many megahertz frequencies. Signal and power leads usually require filtering for both normal-mode and common-mode components ahead of the instrumentation involved. Leads carrying battery power will be "contaminated" when exposed to enginecompartment noise for even a few feet unless appropriate precautions are taken.

## ABS signals ${ }^{2}$

The following example involves using the Model 441A to monitor the wheel speed sensor signals of an antilock brake system (ABS) on a vehicle. These signals, approximately 10 Hz per mile/hour of speed, are typically generated by a magnetic pickup producing a sinusoidal signal used by the ABS system. Therefore, the signal varies from 0 Hz to 1000 Hz for speeds from zero to 100 mph . The signal amplitude increases with speed from about 30 mV at 10 mph to 3 V at 100 mph . This signal would be ideal for the Model 441A except for the noise, both common mode and normal mode, that has an amplitude of from 1 V to 3 V p-p. Obviously, without filtering these signals, the output of the converter would not be very usable, especially at lower speeds.

Because of noise on the power leads in a vehicle, the recommended power source is a separate battery. If vehicle battery power is used, it is mandatory that additional filtering be incorporated in the power leads. The filter should be located adjacent to the enclosure of the frequency-to-voltage converters, and it should have 60 dB of attenuation from 10 kHz up to several megahertz. Both plus and common leads should be filtered with respect to a good chassis ground.

Figure 4-7 shows a recommended wiring diagram of an Ectron Model E408-6 enclosure with Model 441A fre-quency-to-voltage converters. Power is from a separate battery. Adjustment of input filter and sensitivity should

[^0]be made to provide optimum operation for the range of speeds involved. The filter shown in Figure 4-7 can be added ahead of the input to the Model 441A. Figure 4-8 shows a noise filter and attenuator that can be added ahead of each Model 441A. The bridge-completion terminals of the Model E408-6 can be used for mounting components of this filter. Note that the noise filter has different characteristics for differential signals than for common-mode signals.

Best results were obtained feeding the ABS signals through an active input-signal conditioner that involved filtering and pulse-shaping circuits ahead of the Model 441A. Figure 4-9 shows a recording obtained at the factory during these tests. Ectron engineers are available for consultation on specific applications.

(4) Ectron

## Section V Theory of Operation

## GENERAL

This discussion is organized to follow the signal flow, and as such describes the hardware signal conditioning first, then the firmware, and then the hardware output stages. The powersupply discussion is placed after the signal-flow discussion. Refer to Figure 5-1, the block diagram of the Model 441A.


Figure 5-1
Model 441A Block Diagram

## SIGNAL CONDITIONING (HARDWARE)

The two signal inputs feed a differential amplifier with a gain of 0.2 , the single-ended output of which is limited to approximately 1.2 V . Therefore, input voltages in excess of about 7 V are limited at the output of this stage. This limiting does not affect the input impedance of the Model 441A.

After the limiting stage, the signal passes through an ac-coupling capacitor, which removes any dc component of the signal.
The signal next feeds through an amplifier, the gain of which is automatically controlled to keep the peak-to-peak voltage of its output at a constant level. This ensures that input signals of varying levels will be properly detected.
The signal then feeds to the microcontroller, which detects high-to-low transitions. High-tolow transitions are detected since many signal sources produce faster fall times than rise times. When the input signal contains significant noise, any uncertainty in transition detection results in uncertainty in frequency measurement. Slow transition times can cause transitiondetection uncertainties when the signal contains noise.

## FREQUENCY MEASUREMENT (FIRMWARE)

Frequency measurement is based on the time period between high-to-low transitions of the input signal. If the period of time between high-to-low transitions of the input signal is greater than one millisecond, frequency is determined by taking the reciprocal of each signal period. If the period of time is less than one millisecond, high-to-low transitions are accumulated until one millisecond has elapsed. Frequency is then determined by dividing the number of transitions accumulated by the period of time required to accumulate those transitions. Granularity in period measurement is 667 ns , and the frequency is measured no faster than once per millisecond.

## TRANSFER FUNCTION (FIRMWARE)

Once the frequency has been determined, output scaling and offset must be applied to determine the proper output voltage.
First, the measured frequency is subtracted from the lower-frequency set-point. Then, that difference is multiplied by the difference between the upper- and lower-voltage set-points, and then that value is divided by the difference between the upper- and lower-frequency set points. A correction factor is added to compensate output-stage component variations, and the resulting value is fed to the output DAC (digital-to-analog converter). This correction factor is determined by the plus- and minus-ten-volt alignment made during setup.

The firmware has the capability of performing the entire process 1000 times per second, so the output voltage will properly represent the frequency of a particular cycle of the input signal approximately one millisecond after a low-to-high transition of the signal (for input signals of one millisecond or greater period).

## OUTPUT STAGES (HARDWARE)

The output stages consist of a 14-bit DAC, an analog filter, and an output driver. These circuits provide an output voltage range of approximately plus and minus eleven volts. The filter is low-pass, two-pole, with Bessel characteristics; and is factory set to $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz cutoff frequencies. The wideband position available from the front panel sub-
stitutes a single-pole low-pass filter set to approximately 1500 Hz . The output driver provides low-impedance outputs and is limited to approximately 20 milliamperes of output current.

## POWER SUPPLIES (HARDWARE)

The Ectron Model 441A contains an isolated switching power supply which runs at approximately 20 kHz . All internal circuitry operates from this module, which is transformer coupled to provide excellent isolation from the user's power supply.
(4) Edron

# Section VI <br> Alignment and Calibration 

This section details the alignment and testing required to verify the proper performance of the Model 441A. The basic alignment and calibration procedure is presented first, followed by optional additional tests that the user may choose to perform. A blank calibration test report is also included at the end of the section. Before proceeding, the operator should become familiar with the operation of the Model 441A.

## EQUIPMENT REQUIRED

## Basic Alignment and Calibration

DMM

## Oscilloscope

Function generator
Frequency meter
(if necessary)

Power supply

Mating connector

Switch

Agilent Model 34401A or equivalent. An equivalent must have at least $0.01 \%$ accuracy in the range of 0 V dc to 10 V dc.

Tektronix Model 7603 (with Model 7A13 vertical and Model 7B53A horizontal plug-in's) or equivalent.

Wavetek Model 188 or equivalent.
Needed if not already present in the DMM being used, and if the function generator does not provide a precise reading of the frequency.

Any ( 10.5 V dc to 32 V dc with at least a 200 mA output).

Fifteen-pin (female) Type D subminiature such as a DA-15S or a DAM-15S.

One single-pole single-throw toggle switch. The test technician can forego the use of this switch, but it does make the tests easier to perform.

## Additional Tests (Optional)

## Switch

## PRE-CALIBRATION

Setup

One double-pole double-throw toggle switch. The test technician can forego the use of this switch, but it does make the tests easier to perform.

Connect the Model 441A as shown in Figure 6-1. Set the power supply to any voltage from 10.5 V dc to 32 V dc and set S 1 to On.

When the Model 441A is turned on, the OPERATE screen will normally appear. If ALIGN REQ'D appears instead, adjust either of the front-panel controls to go to the OPERATE screen.


Figure 6-1
Frequency-range Setup

Frequency Range

Press the display once to go to FREQUENCY. Set the Upper frequency to $\mathbf{5 0 0 0 0}$ and the Lower frequency to 00000.

Press the display again to go to VOLTS. Set the Upper voltage to $\mathbf{+ 1 0 . 0}$ and the Lower voltage to $\mathbf{+ 0 0 . 0}$.

Press the display six times (or wait approximately twenty seconds) to return to OPERATE.

Set the function generator for a 50 kHz square wave of 5 V p-p. Verify the waveform is present on the oscilloscope.

Increase the frequency on the function generator until the waveform disappears on the oscilloscope. Record the highest frequency for which the Model 441A produces an output. If needed, use the frequency meter to determine the exact frequency.

Press the display once to go to FREQUENCY. Set the Upper frequency to 00001.

Press the display seven times (or wait approximately twenty seconds) to return to OPERATE.

Set the function generator to 1 Hz . Verify the Model 441A registers the frequency.


Figure 6-2 Frequency-calibration Setup

Frequency Calibration

Reduce the frequency on the function generator until the Model 441A no longer registers the input. (The reading will alternate between -- and $\mathbf{0}$.) Record the minimum frequency.

Connect the Model 441A as shown in Figure 6-2 and set S1 to On.

Press the display once to go to FREQUENCY. Set the Upper frequency to $\mathbf{0 1 0 0 0}$ and the Lower frequency to 00000.

Press the display seven times (or wait approximately twenty seconds) to return to OPERATE.

Set the function generator to 1 kHz .
When the DMM's reading stabilizes, record the voltage.
Press the display once to go to FREQUENCY. Set the Upper frequency to $\mathbf{5 0 0 0 0}$.

Press the display seven times (or wait approximately twenty seconds) to return to OPERATE.

Set the function generator to 50 kHz .
When the DMM's reading stabilizes, record the voltage.


Figure 6-3
Alignment

## ALIGNMENT

Setup

Screen Adjustment

Voltage Alignment

Connect the Model 441A as shown in Figure 6-3 and set S1 to On.

From the OPERATE screen, press and hold the display/push button for one second to activate the VIEW ANGLE screen. Adjust the encoder counterclockwise and clockwise to verify the view angle is adjustable in both directions. Turning it clockwise darkens the screen and counterclockwise lightens it. When finished, set the knob for the best viewing contrast.

While still at VIEW ANGLE, press the display once to go to ADJUST -10 V. Adjust the encoder until $-10.000 \mathrm{~V} \pm 0.005 \mathrm{~V}$ is obtained on the DMM. The three digits on this display (maximum range of $\pm 750$ counts) are provided as a reference if needed. The least count is $\approx 1.3 \mathrm{mV}$. Record the DMM reading.

Press the display again to go to ADJUST $\mathbf{+ 1 0} \mathrm{V}$. Rotate the encoder until the DMM reads $+10.000 \mathrm{~V} \pm 0.005 \mathrm{~V}$. The three digits on this display (maximum range of $\pm 750$ counts) are provided as a reference if needed. The least count is $\approx 1.3 \mathrm{mV}$. Record the DMM reading.

Press the display again to the return to the OPERATE screen.


Figure 6-4
Optional Tests

## POST-CALIBRATION

Follow the same procedure as given above for pre-calibration. This completes the alignment and calibration of the Model 441A.

## OPTIONAL CALIBRATION TESTS

Connect the Model 441A as shown in Figure 6-4 and set S1 to On.
Zero in, zero out
From OPERATE, press the display once to go to FREQUENCY. Set the Upper frequency to $\mathbf{5 0 0 0 0}$ and the Lower frequency to 00000.

Press the display again to go to VOLTS. Set the Upper voltage to $\mathbf{+ 1 0 . 0}$ and the Lower voltage to $\mathbf{+ 0 0 . 0}$.

Press the display twice more to go to INPUT SENS (The OUTPUT FILTER need not be set at this time.) and rotate the encoder to display MAX.

Press the display again to go to INPUT B/W and again rotate the encoder to display MAX.

Press the display twice (or wait approximately twenty seconds) to return to OPERATE.

With S2 at 1, the output of the Model 441A, as read on the DMM , should be $0 \mathrm{~V} \pm 0.005 \mathrm{~V}$, and the green light should be out.

## Sensitivity and AGC

## Digital Output

Set the function generator for a 5 Hz square wave. Adjust its output for 20 mV p -p as viewed on the oscilloscope. Set S2 to 2. The frequency displayed should be approximately 5.0000 .

Repeat the previous paragraph with the function-generator frequency set to 50 kHz . The frequency displayed should be approximately 50000 .

Set INPUT SENS to the settings listed in Table 6-1 and repeat the above sensitivity tests.

Repeat the previous paragraph with the function generator output adjusted to 20 V p-p. (You will have to move to the Hi Output on the function generator.) The frequency displayed should remain the same (approximately 50000).

Connect an oscilloscope to the digital output (Pin 3) and verify that the output is a 0 V to 5 V square wave at the input frequency.

Table 6-1
Input Sensitivity

| INPUT SENS | INPUT VOLTAGE (p-p) |
| :---: | :---: |
| MAX | 20 mV |
| MID | 80 mV |
| MIN | 600 mV |

## Ectron Model 441A Calibration Test Report

Customer $\qquad$
Address $\qquad$

Date $\qquad$
Serial Number $\qquad$
Report Number $\qquad$

Measurement
PRE-CALIBRATION
Frequency Range

Frequency Calibration

$$
\begin{array}{rl}
50 \mathrm{kHz} & 10 \mathrm{~V} \pm 0.0079 \mathrm{~V} \\
1 \mathrm{kHz} & 10 \mathrm{~V} \pm 0.0079 \mathrm{~V}
\end{array}
$$

Frequency Range
Frequency Calibration
Frequency Range
Frequency Calibration

## ALIGNMENT

Frequency Range

| Max | kHz | $>50 \mathrm{kHz}$ |
| ---: | :--- | :--- |
| Min | $<1 \mathrm{~Hz}$ |  |
| 50 kHz | Hz | $10 \mathrm{~V} \pm 0.0079 \mathrm{~V}$ |
| 1 kHz | V | $10 \mathrm{~V} \pm 0.0079 \mathrm{~V}$ |

Specification

$$
\begin{array}{ll}
+10 \mathrm{~V} \ldots \mathrm{~V} & +10 \mathrm{~V} \pm 0.005 \mathrm{~V} \\
-10 \mathrm{~V} \ldots \mathrm{~V} & -10 \mathrm{~V} \pm 0.005 \mathrm{~V}
\end{array}
$$

## POST-CALIBRATION

| Max $\quad \mathrm{kHz}$ | $>50 \mathrm{kHz}$ |
| ---: | :--- |
| $\mathrm{Min} \ldots \mathrm{Hz}$ | $<1 \mathrm{~Hz}$ |
| $50 \mathrm{kHz} \sim \mathrm{V}$ | $10 \mathrm{~V} \pm 0.0079 \mathrm{~V}$ |
| $1 \mathrm{kHz} \sim \mathrm{V}$ | $10 \mathrm{~V} \pm 0.0079 \mathrm{~V}$ |

Temperature: $\qquad$ ${ }^{\circ} \mathrm{C}$

Relative Humidity: $\qquad$ \%

Remarks: $\qquad$

Technician: $\qquad$ Inspection: $\qquad$

EQUIPMENT USED
Manufacturer Model Serial Number Cal Date Next Cal Due
$\qquad$
$\qquad$
$\qquad$
(4) Ectron

## Section VII Parts Lists

## NAMES OF MANUFACTURERS

Table 7-1 lists the manufacturers of the components used by Ectron in the products for which parts lists and schematics are provided. They are listed numerically for easy cross reference to the parts lists.

Table 7-1
List of Manufacturers

| Number | Manufacturer | Number | Manufacturer |
| :---: | :---: | :---: | :---: |
| 00027 | Allen-Bradley Co. | 00726 | Rohm |
| 00044 | Amphenol | 00763 | Samtec |
| 00060 | Aries Electronics | 00808 | Siliconix Inc. |
| 00074 | Augat Interconnection | 00834 | Sprague Electric Co. |
| 00091 | Bendix Corp. | 00845 | Standard Power Inc. |
| 00127 | Bussmann Div. | 00863 | Switchcraft Inc. |
| 00128 | C\&K Components Inc. | 00949 | Useco |
| 00166 | Circuit Assembly Corp. | 00987 | Winslow International |
| 00206 | Data Display Products | 01094 | Central Semiconductor |
| 00336 | Fairchild | 01152 | TRW-cinch |
| 00464 | ITT Cannon | 01164 | PEM |
| 00493 | Kemet, Union Carbide Corp | 01166 | Kulka Smith |
| 00503 | KOA Speer Electronics | 01176 | Belden |
| 00532 | Littelfuse Inc. | 01177 | Keystone |
| 00564 | Philips | 01230 | Ectron Corporation |
| 00616 | Motorola Semiconductor | 01264 | IRC (Int'l. Resistive Co.) |
| 00628 | National Semiconductor | 01302 | Elco (Cosel) |

## MODEL E408-6 ENCLOSURE (Drawings 408-600 and 408-601)

REFERENCE DESIGNATOR
C1,C2,C3
C4
CR1, CR2
CR3,CR4,CR6, CR7
CR5
CR8
DS1
F1
F2
J1-J6
J7
J8
J9-J14
J15-J20
P1-P6
P7
PS1, OPTION X
PS1, OPTION Y
Q1,Q2
Q3
R5
R6,R7
R8
R9
R10
S1
S2
S3
U1
XF1,XF2
W1, W2
FOR TOP COVER

| DESCRIPTION | MFR | MANUFACTURER'S P/N | ECTRON P/N |
| :---: | :---: | :---: | :---: |
| CAPACITOR, 4.7UF/35V TANTALUM | 00834 | 199D475X9035CA2 | 1-444700-1 |
| CAPACITOR, 4.7UF/50V CERAMIC | 00493 | C340C475M5U5CA | 1-444709-0 |
| DIODE, SIGNAL | 01094 | 1N457 | 1-190457-0 |
| DIODE, SIGNAL | 00628 | 1N4148 | 1-194148-0 |
| ZENER, 11V 11.5MA 500MW | 00616 | 1N962B | 1-190962-0 |
| DIODE, POWER | 00336 | 1N4002 | 1-194002-0 |
| LAMP | 00206 | 91W-EWR24H-CR0 | 4-121007-0 |
| FUSE, 1.5A NORMAL BLOW | 00532 | 31201.5 | 2-161500-0 |
| FUSE, 1A SLOW BLOW | 00532 | 313001 | 2-161000-1 |
| CONNECTOR, 6-PIN | 00091 | PT02A-10-6S | 1-310506-1 |
| CONNECTOR, 3-PIN | 00091 | PT02A-12-3P | 1-310103-0 |
| RECEPTACLE, POWER | 00863 | EAC-309 | 3-840043-0 |
| CONNECTOR, 15-PIN D | 01152 | DA-15-SV | 1-310015-6 |
| CONNECTOR, BNC | 00044 | 31-010 | 1-311102-0 |
| CONNECTOR, 6-PIN | 00091 | PT06A-10-6P(SR) | 1-310506-0 |
| CONNECTOR, 3-PIN | 00091 | PTO6A-12-3S(SR) | 1-310103-1 |
| POWER SUPPLY, 28 V | 01302 | R50U-24-N | 5-120026-0 |
| POWER SUPPLY, 12 V | 01302 | R50U-12-N | 5-120025-0 |
| FET, MOS 1.2-OHM | 00808 | VN0300L | 1-240030-0 |
| TRANSISTOR, PNP | 00628 | 2N3702 | 1-213702-0 |
| JUMPER |  |  |  |
| RESISTOR, 1MEG/5\% 1/4W | 00564 | 5043EM1M000JB | 6-174100-0 |
| RESISTOR, 470 OHM 5\% 2W | 01264 | SPH 470 OHM 5\% 2W | 6-200470-0 |
| RESISTOR, 15K 1/4W 5\% | 00564 | 5043CX15K00J | 6-172150-0 |
| RESISTOR, 100/5\% 1/4W | 00564 | 5043CX100R0J | 6-170100-0 |
| SWITCH, TOGGLE | 00128 | 7203-K-Z-G-E | 7-110059-0 |
| SWITCH, PUSHBUTTON | 00128 | 8121-J83-Z-G-E-3-2 | 7-120012-0 |
| SWITCH, TOGGLE | 00128 | 7103-K-Z-G-E | 7-110048-0 |
| IC | 00808 | 7661 CJ | 1-147661-0 |
| FUSEHOLDER | 00532 | 342004 | 2-170006-0 |
| JUMPER, PLUG | 00166 | CA-02-SJOB | 1-319921-0 |
| SCREW, 6-32 CAPTIVE PANEL | 01164 | PS10-632-40 | 3-905032-1 |
| FERRULE | 01166 | 1670 | 3-905010-0 |
| FOOT | 01166 | 2192 | 3-840008-0 |
| HANDLE | 00949 | B1073-12 BRASS CHRM PLT | 3-820019-0 |
| POWER CORD, USA/CANADA | 01176 | 17250B | 3-840026-0 |

## MODEL R408-14 ENCLOSURE (Drawings 408-605 and 408-606)

REFERENCE DESIGNATOR
C1, C2, C3
C4
CR1, CR2
CR3, CR4, CR6, CR7
CR5
CR8
DS1
F1
F2
J1-J14
J15-J28
J29-J42
J43
J44
P1-P14
P43
PS1, OPTION Y
PS1, OPTION X
Q1, Q2
Q3
R5
R6
R9
R10
S1
S2
S3
U1
W1, W2
XF1, XF2

| DESCRIPTION | MFR | MANUFACTURER'S P/N | ECTRON P/N |
| :---: | :---: | :---: | :---: |
| CAPACITOR, 4.7UF/35V TANTALUM | 00834 | 199D475X9035CA2 | 1-444700-1 |
| CAPACITOR, 4.7UF/50V CERAMIC | 00493 | C340C475M5U5CA | 1-444709-0 |
| DIODE, SIGNAL | 01094 | 1 N457 | 1-190457-0 |
| DIODE, SIGNAL | 00628 | 1N4148 | 1-194148-0 |
| ZENER, 11V 11.5MA 500MW | 00616 | 1N962B | 1-190962-0 |
| DIODE, POWER | 00336 | 1N4002 | 1-194002-0 |
| LAMP 12-40V | 00206 | 91W-EWR24H-CR0 | 4-121007-0 |
| FUSE, 5A/32V 3AG | 00127 | BK/AGC-5X | 2-165000-0 |
| FUSE, 1A/250V 3AG SLOBLO | 00532 | 313001 | 2-161000-1 |
| CONNECTOR, 6-PIN | 00091 | PT02A-10-6S | 1-310506-1 |
| CONNECTOR, BNC | 00044 | 31-010 | 1-311102-0 |
| CONNECTOR, 15-PIN | 01152 | DA-15-SV | 1-310015-6 |
| CONNECTOR, 3-P | 00091 | PT02A-12-3P | 1-310103-0 |
| RECEPTACLE, POWER | 00863 | EAC-309 | 3-840043-0 |
| CONNECTOR, 6-PIN | 00091 | PT06A-10-6P(SR) | 1-310506-0 |
| CONNECTOR, 3-PIN | 00091 | PTO6A-12-3S(SR) | 1-310103-1 |
| POWER SUPPLY | 01302 | R50U-12-N | 5-120025-0 |
| POWER SUPPLY | 01302 | R50U-24-N | 5-120026-0 |
| FET, MOS VN 30V 1.2-OHM | 00808 | VN0300L | 1-240030-0 |
| TRANSISTOR, PNP | 00628 | 2N3702 | 1-213702-0 |
| JUMPER |  |  |  |
| RESISTOR, 1MEG 1/4W 5\% | 00564 | 5043EM1M000JB | 6-174100-0 |
| RESISTOR, 15K 1/4W 5\% | 00564 | 5043CX15K00J | 6-172150-0 |
| RESISTOR, 100 1/4W 5\% | 00564 | 5043CX100R0J | 6-170100-0 |
| SWITCH, TOGGLE | 00128 | 7303KYZGE | 7-110024-0 |
| SWITCH, PUSH-BUTTON | 00128 | 8125SHZBE | 7-120002-0 |
| SWITCH, TOGGLE | 00128 | 7103KZGE | 7-110048-0 |
| IC, VOLTAGE CONVERTER | 00808 | 7661CJ | 1-147661-0 |
| JUMPER | 00166 | CA-02-SJOB | 1-319921-0 |
| FUSEHOLDER | 00532 | 342004 | 2-170006-0 |
| FERRULE | 01166 | 1670 | 3-905010-0 |
| GROMMET, 3/8DIA 7/16MOUNT | 01166 | 91107 | 3-801412-0 |
| HANDLE, 3 INCH MOD R418-7 | 01166 | 1622 OR 1620 | 3-820002-0 |
| POWER CORD, USA AND CANADA | 01176 | 17250B | 3-840026-0 |

## $\leftrightarrow$ Ectron



| TYPICAL CUSTOMER |
| :--- |
| CONFIGURATIONS |



|  |  | OESCRIPTION |
| :---: | :---: | :---: |
| ZONE | REV |  |
| - | A | RELEASED |
| - | $B$ | INC ECO |








[^0]:    2
    The ABS system used for these tests involved General Motors Pontiac and Buick cars using the ITT/Teves ABS. Although much of the information given here will apply to other ABS, there may be differences. It is believed that connecting the Model 441A to the ABS signals will not affect operation of the standard ABS; however, no guarantee of this can be made. Therefore, operation of the vehicle should be carefully tested after any installation of this sort. These tests were performed using a Model 441. Using a Model 441A, the results should be better than those shown because of the action of the input filter and response features of the newer product.

